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a b s t r a c t

The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be
that it is caused by the activity of some structural defects, such as free-volumes or shear transformation
zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results
eywords:
etallic glasses
echanical deformation
lass transition
efects

compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical
failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like
sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic
glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical
failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point
of view.

© 2010 Elsevier B.V. All rights reserved.
. Introduction

Because deformation of crystalline materials occurs due to
otion of dislocations, search for similar “defects” in metallic

lasses has been attempted for a long time. Free volume [1] and
hear transformation zone [2] are well-known examples of pro-
osed defects. The concentrations of such defects are assumed to
e low, as those of dislocations. For instance in the glassy state
he free volume amounts only to the order of a percent in volume
raction.

However, these views are strongly challenged by recent results
hich suggest a very different global picture of the local structure

f glasses. In the new picture defects are ubiquitous and occupy
s much as a quarter of the volume. They cause local deformation
hich results in anelasticity, and plastic deformation occurs when

he local anelastic deformations percolate through. In this paper we
rst discuss the nature of the defects in metallic glasses, and point
ut that it is dangerous to estimate its density from the volume
hange. We then review the result of a computer simulation which
onnects mechanical failure directly with glass transition [3] and
he theory of the glass transition based upon the local topological
uctuations [4]. We finally discuss the role of defects in the anelas-
ic behavior, and conclude with the proposal to define structural

efects in metallic glasses in such a way to involve as much as a
uarter of all atoms in the glass.

E-mail address: egami@utk.edu

925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2010.11.007
2. Nature of structural defects in metallic glasses

In crystals lattice defects are unambiguously identified as devi-
ations from the perfect lattice structure. In liquids and glasses, on
the other hand, defects are hard to identify because there is no
reference structure to define the defects against. Nevertheless the
concept of defect is useful in describing the mechanical response.
The variation in the local structure is the principal feature of the
glassy state, so that the local mechanical response also varies from
place to place. Thus it is natural to consider the portions of the
system which respond strongly to the applied stress as defects.
However, direct experimental observation of such defects is dif-
ficult.

Another phenomenon which is easier to comprehend in terms of
defects is the structural relaxation. The hallmark of the liquid state
is that its structure changes with temperature, although it is diffi-
cult to define exactly how it is changing. The structure obtained by
rapid quenching from the liquid state depends on the temperature
of the initial state, or the fictive temperature, Tf [5]. If the glass is
annealed at a temperature, Ta, which is below the glass transition
temperature, Tg, the structure will relax toward the equilibrium
state at Ta. In other words Tf relaxes toward Ta. During the struc-
tural relaxation nearly all the properties of the glass change [6]. It
is natural to explain the structural relaxation in terms of annealing
out structural defects. Most often the free-volume model is invoked,

because the volume is reduced by 0.5% or so during the structural
relaxation.

However, it is dangerous to attribute the relaxation solely to the
reduction in free-volume. During the relaxation heat is released. In

dx.doi.org/10.1016/j.jallcom.2010.11.007
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:egami@utk.edu
dx.doi.org/10.1016/j.jallcom.2010.11.007
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Fig. 1. The curves of equal viscosity as a function of normalized temperature and
T. Egami / Journal of Alloys and

he free-volume theory the ratio of the released enthalpy, �H, to
he volume change, �V, �H/�V, should be comparable to that of
vacancy in the solid, which is 2–3 eV per atom. But the actual

alue of �H/�V measured during the structural relaxation is too
arge compared to what is expected by a factor of 5–10 [7]. A nat-
ral way to resolve this conundrum is to consider not only the
efects where the local density is low (free-volume, or negative
ensity n-type defect), but also the defects where the local density

s high (anti-free-volume, or p-type defect) [8]. During the relax-
tion annihilation of free-volume reduces the total volume, but
he annihilation of the anti-free-volume increases it. These changes
ancel each other in the first order, so the total change in volume,
V, is the second order effect, much smaller than the actual local

olume changes involved [7]. The change in the atomic pair-density
unction (PDF) due to the relaxation observed by X-ray diffraction
9] is explained well by assuming both positive and negative density
uctuations are eliminated by relaxation [10].

This duality of free-volume and anti-free-volume reflects the
act that the interatomic potentials in metallic glasses are more
armonic than those in other glasses such as polymeric glasses
11]. Thus the picture based upon the model of randomly packed
ard-spheres [12,13] does not apply too well for metallic glasses,
s was already pointed out by Cohen and Turnbull in their orig-
nal paper published in 1959 [1]. They showed that the value
f the critical free-volume, v*, is a small fraction (about 10%) of
he atomic volume for metallic liquids, whereas in the original
ree-volume theory it is supposed to be about 80% of the atomic
olume. In addition, in the free-volume picture significant pres-
ure dependence is expected for diffusivity, but for metallic liquids
he measured pressure dependence is much smaller than expected
or the free-volume model [14,15]. Also the isotope effect on diffu-
ion is vanishingly small, again in contradiction to the free-volume
odel [16]. In metallic systems with harmonic potentials local den-

ity fluctuations occur both in positive and in negative directions.
he intensity of such fluctuations cannot be measured by the den-
ity itself, but by the magnitude or amplitude of the local density
uctuations.

. Equivalence of mechanical failure and glass transition

As is widely known metallic glasses mechanically fail by form-
ng localized shear bands, and the fracture surface is characterized
y the vein pattern which suggests local melting in the shear band
17]. Also there are ample reports of local heating within the shear
and [18,19], which could reduce viscosity and lead to local melt-

ng. However, it is most likely that local heating is a consequence
f rapid and severe deformation rather than the cause of defor-
ation [19,20]. Instead of heating, local volume expansion, thus

ncreased free-volume, was suggested as the cause of local defor-
ation [20,21]. But it is highly questionable if local volume has

ime to expand in a very short time available for the nucleation of
shear band. Also the free-volume mechanism should result in a

trong effect of pressure on deformation, but a careful experimen-
al work by Varadarajan and Lewandowski [22] has shown that the
ffect of pressure on the fracture strength is remarkably small. They
oncluded that the fracture occurs when the shear stress reaches
he critical value, and pressure has, if any, only minor effects. This
esult is consistent with the absence of the pressure effect on dif-
usion [14,15], and casts doubt on the free-volume mechanism of
eformation.

Indeed the recent molecular dynamics (MD) simulation demon-

trated that the applied shear stress has the equivalent effect as
emperature in reducing the viscosity and inducing mechanical
ow, even without local volume expansion [3]. In this work the
teady-state flow under the stress, �, was simulated for various
shear stress, computed by MD simulation on amorphous Zr50Cu40Al10 [3]. The curves
are self-similar, and can be collapsed into one universal curve.

temperatures, T, and strain rates, �̇ , for a model system with a set
of realistic potentials for Zr50Cu40Al10 [23]. Both temperature and
volume were kept constant during the simulation, so there was no
effect of heating or dilation. The viscosity was calculated as � = �/�̇ .
It was found that the shear stress alone is sufficient in reducing the
viscosity and inducing the flow.

Moreover the constant viscosity curve plotted in the T–� surface
(Fig. 1 [3]) was found to be self-similar, and can be collapsed to a
single curve by the surprisingly simple scaling relationship,

T

T0 (�)
+

(
�

�0 (�)

)2
= 1 (1)

where T0(�) is the T intersect (� = 0) of the curve for viscosity �,
and �0(�) is the � intersect (T = 0) of the same curve. The quadratic
power of � is consistent with the symmetry, because changing the
sign of � corresponds to shearing in the opposite direction, without
changing the physics. The implications of this equation are dis-
cussed below. The result shown in Fig. 1 demonstrates the direct
and intimate connection between the glass transition and mechan-
ical failure, and shows that mechanical failure is the glass transition
induced by the applied stress.

4. Atomistic mechanism of glass transition

Now that the nature of mechanical failure is established as the
stress-induced glass transition, we need to understand the phe-
nomenon of the glass transition itself. In our earlier publication we
assumed that above Tg the atomic level volume strain, εT

v , follows
the formula,

Eel,LT =
VB

〈(
εT

v

)2
〉

2K˛
= kT

4
,

K˛ = 3 (1 − �)
2 (1 − 2�)

(2)
where B is the bulk modulus, V is the atomic volume, and � is the
Poisson’s ratio [4]. The atomic level volume strain can be calcu-
lated from the atomic level pressure, p [24] as εv = p/B. Separately
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ig. 2. The calculated fraction of the liquid-like sites, as a function of T/Tg. At Tg the
raction freezes at a constant value, as indicated by a dashed line.

e have shown that if the atomic level volume strain exceeds the
ritical volume strain,

εcrit
v

∣∣ = 0.11 (3)

he local topology, the arrangement of the nearest neighbor atoms,
ecomes unstable [25]. The atomic sites with the volume strain
xceeding the value in Eq. (3) are defined as liquid-like defect sites.
he density of the liquid-like sites, p(liq), depends on temperature,
nd is given by

p (liq) = CE (z) = 2√
�

∫ ∞

z

e−x2
dx,

z = εcrit
v

√
2
〈(

εT
v

)2
〉1/2

= εcrit
v√

K˛kT/VB

(4)

here CE(z) is the complementary error function [4]. Temperature
ependence of p(liq) is shown in Fig. 2 as a function of T/Tg. The
alue of Tg used here was determined as below. Upon cooling p(liq)
ecreases with decreasing temperature, and when it reaches the
ritical concentration for percolation the glass transition should
ccur. Then p(liq) stays constant below Tg as shown by a dashed
ine in Fig. 2. Thus the glass transition temperature is given by,

Tg = 2BV

K˛

(
εT,crit

v

)2
. (5)

The values of the glass transition temperature, experimentally
etermined for a large number of bulk metallic glasses, agree with
q. (5) quite well with the value of the critical strain, εT,crit

v = 0.095.
rom Eqs. (5) and (6) we obtain,

2 = Tg

2T

(
εcrit

v

εT,crit
v

)2

(6)

This value gives z = 0.825 and p(liq) = 0.243 [4], which is approxi-
ately the percolation concentration for the dense random packed

tructure [26]. So the concentration of defects is not a few % as is
idely assumed, but is of the order of 1/4. Indeed our recent X-

ay diffraction study of a metallic glass showed that the volume

raction of defects is nearly 1/4, in excellent agreement with the
stimates above [27]. In this work the structural change under the
pplied stress in the apparently elastic regime was examined by
igh-energy synchrotron X-ray diffraction using the anisotropic
pounds 509S (2011) S82–S86

pair-density function (PDF) analysis. It was found that a significant
part of the mechanical response to the applied stress by a metallic
glass is actually anelastic, even though the system behaves elas-
tic macroscopically. The volume fraction of the anelastic sites was
found to be 24%. In addition our theory is supported by the recent
report that the jump in the specific heat is close to (3/2)kB per atom
[28]. In our theory the configurational enthalpy above Tg is equal to
kBT/4 for each six component of the stress, adding up to (3/2) kBT
in total, and freezes to a constant value below Tg. This produces the
jump in the specific heat by (3/2)kB.

5. Viscosity

Eq. (5) describes the equilibrium atomic configuration at Tg in
terms of the average local strain, εT,crit

v , but does not describe the
dynamics of structural excitations that determine viscosity and the
kinetics of structural relaxation. In order to address this question let
us examine how the atomic level strain is changed by local atomic
rearrangement. The atomic level strain of an atom depends primar-
ily on the topology of its nearest neighbor atomic cage [29]. Thus
for the atomic level strain to change, the nearest neighbor cage
has to undergo some collective displacements to alter its topology
through a saddle point to a new stable configuration.

For instance the atomic level volume strain, εT
v , is directly related

to the coordination number of that atom, NC [29,30]. In order to
relax the local volume strain of an atom i the local coordination
number has to change. But NC is an integer, so it can change only
by unity at a time. Thus the strain which produces the change in
NC by 1/2 represents the saddle-point strain [25,31]. This logic was
used in deducing the critical volume strain, Eq. (3). Then the local
energy increase for the atom i is given by

	saddle = BV

2

(
εcrit

v
)2

(7)

However, not only the i-th atom but also all the nearest neigh-
bors also have to undergo the distortion collectively. Thus the total
activation energy is multiplied by the cage effect,

Ea = Acage 	saddle (8)

The factor Acage may be estimated for specific configurations
[32], but in general it is difficult to calculate it directly. However,
the activation energy at the glass transition temperature can be
calculated using the expression for viscosity,

� = �0exp
(

Ea/kT
)

(9)

Because �0 = 10−4 poise [33] and � = 1013 poise at Tg by defini-
tion, we obtain, at T = Tg,

Ea = CkTg, C = 39.1 (10)

From Eq. (5),

	saddle = K˛kTg

4

(
εcrit

v

εT,crit
v

)2

(11)

then,

Acage = aC = 50.8, a = 4
K˛

(
εT,crit

v

εcrit
v

)2

= 1.30 (12)

Above Tg Acage is usually dependent upon p(liq), and thus T,
because the presence of liquid-like atoms within the cage could
make the cage weaker. This dependence is related to the fragility

[33]. For a very strong liquid Acage is independent of p(liq), thus of
temperature. This can happen if the liquid-like sites are well sepa-
rated from each other, and the cage does not include the liquid-like
sites. In network glasses and polymers the weak links are van der
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aals bonds, whereas the strong covalently bonded network can
eparate the weak links from each other.

In random metallic glasses liquid-like sites can be next to each
ther. Then inclusion of the liquid-like sites in the cage decreases
cage. Increase in temperature, thus in p(liq), will result in fast
ecrease in Acage, and the system shows a fragile behavior. The
ragility is related to the degree with which the liquid-like sites
re incorporated in the cage. Strong chemical short-range order
ill prevent the inclusion of the liquid-like sites into the cage, and

esult in a strong behavior [31]. In general,

cage (T) = a
Ea

kTg
= a

x
ln

�

�0
, x = Tg

T
(13)

With the fragility coefficient defined by

= d log �

d
(

Tg/T
) (14)

dAcage

dx
= − a

x2
ln

�

�0
+ a′m

x
, a′ = 2.3a (15)

At T = Tg,

dAcage

dx

∣∣∣∣
x=1

= a′ (m − 17) ,
dAcage

dT

∣∣∣∣
T=Tg

= −a′ (m − 17)
Tg

. (16)

Now,

dp (liq)
dz

= −
√

2
�

e−z2/2 (17)

dp (liq)
dx

= − z

2x

√
2
�

e−z2/2 (18)

Thus at T = Tg,

dlnAcage

dp (liq)

∣∣∣∣
T=Tg

= −C ′ (m − 17) , C ′ = 0.111 (19)

If we assume that Acage changes linearly with the fraction of
he solid-like sites, p(sol) = 1 − p(liq), for a totally random system
ln Acage/dln p(sol) = 1. This gives m = 29.

. Mechanism of deformation

We now discuss the mechanism of deformation below Tg and
he implication of the scaling relationship, Eq. (1). Below Tg Acage

s frozen to a constant value. If we apply an external shear stress,
ext, the distribution of the atomic level shear stress, P(�), becomes
hifted to P(� + �ext). Here we assume �ext is represented by only
ne of the five shear stress components, for instance �xz. Then the
umber of the atomic sites with the shear stress beyond the critical
oint, �crit, increases with �ext. As in Eq. (4) the density of the liquid-

ike site defined by the shear instability is given by

pliq,s

(
z, ı

)
= 1√

2�

[∫ ∞

z+ı

e−x2
dx +

∫ −z+ı

∞
e−x2

dx

]

z = �crit

√
V

K� GkTg
, ı = �ext

√
V

K� GkTg
, K� = 15 (1 − �)

7 − 5�

(20)
Expanding by ı we obtain,

liq,s

(
z, ı

)
= pliq,s (z, 0) + 2

√
2
�

ze−z2
ı2 + .... (21)
pounds 509S (2011) S82–S86 S85

From Eq. (19),

dAcage
(

ı
)

Acage (0)
= −C ′ (m − 17) dpliq,s

(
z, ı

)
= −C ′′ (m − 17) ze−z2

ı2 + ..

C ′′ = 2

√
2
�

C ′ = 0.178

(22)

With Eq. (8),

Ea = Acage (0) 	saddle

[
1 − C ′′ (m − 17) ze−z2

ı2
]

= Acage (0) 	saddle

[
1 −

(
�ext

�0

)2
]

, �0 = �crit/z√
C ′′ (m − 17) ze−z2

(23)

The scaling relation, Eq. (1), can indeed be rewritten with the aid
of Eq. (9) in the same form as Eq. (23) [4]. The effect of the exter-
nal stress is to increase the density of the liquid-like sites through
Eq. (21) and to reduce the cage factor, thus the activation energy
through Eq. (23).

7. Conclusions

During the structural relaxation the volume decreases by about
0.5%, and at the same time various properties undergo significant
changes. This observation is easy to understand in the framework
of the free-volume theory, which has been widely used in the field
of metallic glasses in spite of the warning in the original paper [1].
Thus the majority of researchers subscribe to the idea that the den-
sity of structural defects in metallic glasses is of the order of 1%.
On the other hand in the high-temperature liquid state all atoms
are unstable. Therefore one might conclude that a significant frac-
tion of atoms belong to the defects. Thus in the free-volume theory
during supercooling and cooling through the glass transition the
majority of the defects are eliminated. In the Adam-Gibbs theory
[34] as well this drastic decrease in the defect density was directly
related to the precipitous decrease in the configurational entropy
during cooling. In both theories in the almost immobile glassy state
the defect density is quite low. On the other hand, in the percola-
tion theory of Cohen and Grest [35] and in our theory [4] the defect
density needs to come down only to the percolation concentration,
which is not a few %, but is of the order of 20%. Below Tg defects are
not eliminated, but they are localized and contribute only to anelas-
ticity. Recent data [27] are in support of the high density of defects.
In addition our recent simulation [3] directly connects mechanical
failure and the glass transition. Thus mechanical failure as well is
caused by percolation of defects with substantial densities, and not
by a small number of topological defects which play the equivalent
role of dislocations in crystals. The accumulation of new evidences
are making a compelling case for the view that concentrations of
defects in glasses are actually quite high.
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